短距离无线通讯:Zigbee典型实例详解(一) 您所在的位置:网站首页 zigbee 照明控制的通讯距离 短距离无线通讯:Zigbee典型实例详解(一)

短距离无线通讯:Zigbee典型实例详解(一)

2024-07-16 16:59| 来源: 网络整理| 查看: 265

 

  一、ZigBee现状及前景分析

  ZigBee从2002年ZigBee Alliance成立到2006年联盟推出比较成熟的ZigBee 2006标准协议,至今已走过了多个春秋,当Zigbee几年前刚出现时,它的支持者曾设想这种基于IEEE 802.15.4规范的无线技术拥有潜在的巨大市场。在低吞吐量、短距离通信应用中,成本是第一王牌,而类似蓝牙、802.11x和802.15.3等规范的性能过于强大。但对于一些Zigbee支持者来说,当初的设想并没有成为现实。

  任何一项通信协议标准都离不开上游芯片厂商的支持和推动,ZigBee作为一项低功耗;低速率无线短距离传输应用的标准,自然也离不开芯片厂商的支持。从整个ZigBee产业联盟来看,主要的上游芯片供应商有五家,分别为Jennic;Ti(Chipcon);Frescale;Ember;Ateml。“芯片”实际上只是一个符合物理层标准的芯片,它只负责调制解调无线通讯信号,所以必须结合单片机才能完成对数据的接收发送和协议的实现。为了进一步减少OEM厂商的成本,部分上游芯片厂商推出了在单颗芯片上同时集成了物理层的收发和单片机功能的单Soc解决方案,单Soc把射频部分和单片机部分集成在了一起,不需要额外的一个单片机,它的好处是节约成本,简化设计电路。而且基本上每家芯片公司都免费提供了基于自家芯片的ZigBee协议栈,大大地加速了ZigBee的应用和普及。

  随着ZigBee协议标准的逐步完善和物联网大环境的带动,整个ZigBee产业可以说是朝着越来越繁盛的趋势发展,在5大上游芯片厂商和ZigBee联盟的不断努力推动下,基于ZigBee应用层出不穷,并和我们的实际生活接轨,让人们的生活更加智能美好了!

  ZigBee技术的应用十分广泛,现阶段以商业大楼自动化,家庭自动化控制(新建安装)与仪表控制为重点。商业大楼可以利用ZigBee完成自动控制,管理员可以有效地管理空调,灯光,火灾感应系统等各项开关控制系统,可以达到减少能源费用,降低管理人力等节约目的。对消费者来说,若家中具有ZigBee系统,可方便的监控家中的整体运作,有效掌握电力,自来水,瓦斯的使用状况之外,亦可以具有安全功能,例如可以在家中安装无线传感器来监控各种不同情况,一旦侦查到异状即可自动发出警告。ZigBee在仪表控制市场随着国际仪表巨头中国华立仪表集团;韩国NURI Telecom等纷纷开始引进ZigBee技术之仪表控制系统之后,这个市场开始受到重视。ZigBee仪表控制系统相当适合人工高昂,幅员辽阔,或是抄表员素质不良,抄表准确度不高,又或抄表员不易进入水,电,瓦斯仪表所在地的地方。具有这样背景的地方促使ZigBee仪表控制市场具有一定的需求。

  虽然ZigBee应用越来越多,芯片出货量也连年递增,但总体来说,ZigBee市场仍然处于起步探索阶段,还没有真正上量起飞,主要表现在在于可应用的终端商用产品还多处于研发阶段,真正上市的不多,具有典型应用的方向和领域便少,点对点的应用较多,体现ZigBee优势的网状网络应用少,缺乏体现ZigBee大型组网应用。

  虽然ZigBee在艰难中前进,但未来整个ZigBee产品还是值得我们期待,从技术标准层面上来看,未来ZigBee将紧密迎合物联网大概念方向趋势的发展,努力扮演好传输层界面上的角色,在ZigBee联盟的推动下,ZigBee技术将朝着开发SoC(片上系统),更多规范,于IPV6结合,更廉价,更省电,更快速等方向发展。从应用领域和方向方面来看,ZigBee完全有机会开拓在目前大然的智能手机领域中的应用,目前智能手机领域里短距离数据传输主要是通过蓝牙方式来实现,但相比于蓝牙,ZigBee的低功耗更具有优势,2节5号干电池可支持1个节点工作6~24个月,甚至更长,相比较,蓝牙能工作数周,WiFi只能工作数小时。同时,贵重设备的定位也是未来值得关注的一个大的潜在应用领域,加大在大型停车场,矿井人员定位等方面的应用。

  作为离我们最近的中国市场,ZigBee产品的应用爆发可能需要的时间更长,中国的无线网络市场还未成熟,本土厂商的参与度还非常有限,未来ZigBee产业人士要加大无线自动抄表系统,车用无线领域等工业应用,便携设备等高端市场的应用。

  综上所述,作为新兴的短距离无线通信技术,ZigBee产品将以各种各样的方式快步向我们走来,成为人类工作和生活中布可或缺的一部分。

  二、zigbee网络拓扑结构及节点设计

  1 引言

  基于zigbee技术的无线传感器网络适用于网点多、体积小、数据量小,传输可靠、低功耗等场合,在环境监测、无线抄表、智能小区、工业控制等领域已取得一席之地[1]。同时,zigbee规范与协议日臻完善[2]。从zigbee1.0、zigbee1.1到目前最新的zigbee2007/pro,zigbee协议规范的演进对硬件系统提出了更高的要求[3]。

  2 设计要求

  2.1 zigbee网络结构

  从网络结构上看,zigbee网络有星形,树形,网状3种模式,按照网络节点功能划分可分为终端节点(ep)、路由器节点(rp)和协调器节点(cp)3种[2]。其组织结构如图1示。

  无线通讯

  图1 zigbee网络拓扑结构

  其中,协调器节点负责发起并维护一个无线网络,识别网络中的设备加入网络;路由器节点支撑网络链路结构,完成数据包的转发;终端节点是网络的感知者和执行者,负责数据采集和可执行的网络动作[2]。这就要求zigbee网络节点需扮演终端感知者、网络支持者、网络协调者3种角色。

  从功能上,zigbee节点应由微控制器模块、存储器、无线收发模块、电源模块和其它外设功能模块组成。其结构如图2所示。

  无线通讯

  图2 zigbee网络节点模块图

  其中,包括dma、usart模块、定时器模块、a/d模块在内的丰富的外设功能来满足网络对硬件资源的需求,存储器模块完成协议栈的存储与执行,cpu实现数据的运算与处理,mac定时器用于实现网络同步,使用aes技术对信息进行加密,无线模块完成收据的收发与信息帧控制。

  2.2 zigbee网络节点设计要求

  (1)可供选择的无线频段。无线频段的选择要兼具较高的传输速率和较好的绕射性能,同时要具备一定的抗干扰力。2.4ghz频段是ieee 502.15.4定义的工作在ism频段的两个工作频段之一,有16个速率为250kb/s的信道。

  (2)体积小,成本低,易于大规模布建。zigbee技术较其它无线技术的优势在于自组网,这就需要布建大规模的网络节点,因此成本问题凸显出来,有资料显示:10$左右的zigbee网络节点有较高的性价比。

  (3)可靠性。与有线传输介质相比,无线信号传输更容易受到衰落、多径和干扰等问题,zigbee网络是工作在2.4ghz ism频段,与其他无线信道之间干扰是不可避免的。为保证网络在有效范围内建立可靠的传输,网络节点应选择合理的信道接入方式,有效减少帧冲突,使用合理的扩频技术。

  (4)通用性。布建zigbee网络的最终目的是通过网络完成各类操作,主要是i/o操作和a/d操作,这就要求网络节点有一定的通用性,能满足各类传感器和终端设备的操作要求。

  (5)低功耗,支持电池供电。低功耗是zigbee的重要特征,支持休眠-唤醒模式和引入功率控制机制使设备更加省电。典型的zigbee节点在使用普通电池供电的情况下工作12个月以上。

  zigbee网络节点的设计应按照上述的原则与规划进行硬件设计和软件设计。

  3 硬件设计

  3.1芯片选型

  zigbee网络节点硬件设计的的核心是微处理器芯片。微处理器模块在无线收发模块的协作下完成zigbee网络的建立与维护,数据采集与处理,无线数据收发以及zigbee2007协议栈的正常运行[3]。在网络节点的硬件设计中可以根据成本与操作可行性等因数选择不同的的设计方案,本设计选择集微处理器模块和无线收发模块于一体的单芯片解决方案。

  设计选用ti公司最新zigbee芯片cc2530f256,工作在2.4ghz频段,是符合ieee 802.15.4规范的真正片上系统解决方案,也是目前众多zigbee设备产品中表现最为出众的微处理器之一。其主要特性如下:

  (1)片内集成增强型高速8051内核处理器,支持代码预取;256kflash程序存储器,支持最新zigbee2007pro协议;8k数据存储器;支持硬件调试[3]。

  (2)支持2v-3.6v供电区间,具有3种电源管理模式:唤醒模式0.2ma、睡眠模式1ua、中断模式0.4ua。包括处理器和智能片内外设在内的模块,具有超低功耗的特点[3]。

  (3)片内集成5通道dma;mac定时器;1个16位、两个8位普通定时器;32khz睡眠定时器;电源管理与片内温度传感器;8通道12位ad转换器;看门狗等智能外设[3]。高密度集成化电路节约设计成本。

  (4)应用范围包括2.4g-hz ieee 802.15.4系统、rf4ce远程控制系统、zigbee网络、家居自动化、照明系统、工业测控、低功耗wsn等领域[3]。

  cc2530芯片结构如图3所示。

  无线通讯

  图3 cc2530片内功能模块图

  3.2硬件整体设计

  在网络节点硬件平台中,cc2530需要实现的功能以及外围模块主要有3个部分:通过a/d口控制传感器模块进行数据采集;控制无线rf模块完成数据收发;通过i/o口相应主机控制。传感器采集的数据也可通过i/o口与微处理器相连,通过rs232接口可实现网络节点与pc机的通信[3]。外围硬件电路原理图如图4所示。

  无线通讯

  图4 网络节点硬件参考电路图

  由于cc2530芯片内集成了许多特色功能模块,因此,其典型的外围电路也就非常简洁。其中,主时钟晶振采用32mhz无源晶振以及32.768khz时钟晶振;无线rf模块外围电路采用无巴伦的阻抗匹配网络,天线使用50欧鞭状负极性天线,具体的元器件封装信息参见附表所示。

  无线通讯

  附表 网络节点封装信息表

  为了更好提高芯片内部电压精度,输入电压应采用调制后的3.3v稳压电源,接内部参考电压的外围电阻r301精度要在0.5%以上,且选用质量较好的电感、电容等器件。为了指示网络节点的运行状态,在硬件设计中加入两个状态指示灯,使用220欧的限流电阻,分别接在微处理器芯片的p10、p11口,用于指示设备入网、退网等状态,方便开发人员观察,指示灯为可选电路,可根据需求选择使用。

  3.3 pcb设计

  cc2530的zigbee网络节点pcb设计是硬件设计的关键,它同时具备数字电路与高频电路的特点。在元件布局尽量紧凑、美观;在数字信号线走线上做到自然、平滑;高频部分包括匹配电感、电容布局尽量独立、避免干扰,并符合天线特性;节点接口分布采用ti标准接口形式,结构稳固可靠。由于cc2530集无线收发和微处理器于一体,只需要极少的外围辅助电路[3],因此pcb的设计要完全适合无线传感器网络应用。本设计中zigbee网络节点pcb图和实物如图5所示。pcb板的尺寸为长宽高25mm×41mm×1.6mm,接口为11×2双排插针,间距2.54mm。接口管脚定义为ti的标准接口。

  

  图5 通信模块图

  3.4 硬件测试

  经实地测量,在不加功率增益的情况下有效传输距离120米;最大输出功率10dbm;接收灵敏度-97dbm;功耗方面:接收模式24ma,发送模式29ma,低功耗模式0.4ua。该设备具有功能模块专一、接口稳固通用的特点,8路模拟量输入接口,4路数字量输入输出接口,2路数字量输出接口和1个rs232接口。

  4 结束语

  本文介绍了zigbee网络节点设计要求、性能特点与构建框架和较为详尽的设计过程;给出了外围电路的设计以及实际设计出的实物和元器件参数;无线射频部分的特点和pcb设计中的注意事项。

  三、基于ZigBee的智能家居系统设计

  智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。基于智能家居的最新定义,参考ZigBee技术的特点,设计出的本系统,在包含了智能家居必备系统(智能家居(中央)控制管理系统、家居照明控制系统、家庭安防系统)的基础上,加入了家居布线系统、家庭网络系统、背景音乐系统和家庭环境控制系统。在智能家居的认定上,只有完整地安装了所有的必备系统,并且至少选装了一种及以上的可选系统的家居系统才能称为智能家居。因此,本系统可以称为是智能家居。

  1 系统设计方案

  该系统设计由家庭内被控制设备和远程控制设备组成。其中家庭内被控制设备主要有能访问Internet的计算机、控制中心、监控节点和选择添加的家用电器控制器。远程控制设备主要由远程计算机和手机组成。系统组成如图1所示。

  无线通讯

  系统的主要功能有:1)网页前台页面的浏览,后台信息管理;2)通过Internet和手机两种远程控制方式实现室内家用电器、安防和灯光的开关控制;3)通过RFID模块实现用户识别,从而完成室内安防状态的开关,在盗贼入侵时通过短信息(SMS)向用户报警;4)通过中央控制管理系统软件完成室内灯光及家电的本地控制和状态显示;5)利用数据库完成个人信息存储和室内设备状态存储,通过中央控制管理系统方便用户查询室内设备状态。

  2 系统硬件设计

  系统硬件设计包括控制中心、监控节点和选择添加的家用电器控制器(这里以电风扇控制器为例)的设计。

  2.1 控制中心

  控制中心主要功能有:1)组建无线ZigBee网络,把所有监控节点加入网络中,并实现新设备的接收;2)用户身份识别,用户在离家或归来时通过用户卡实现室内安防的开关;3)当有盗贼入侵室内时,通过向用户发送短信息报警。用户也可通过短信息控制室内安防、灯光及家电;4)系统单机运行时,液晶显示当前系统状态,方便用户查看;5)存储电器设备状态并发送至PC机,以实现系统联机。根据控制中心的功能设计出它的组成框图如图2所示。

  无线通讯

  选用TI公司的CC2430单片机作为ZigBee模块的控制器,它是一款高性能、低功耗的805l内核的单片机。也是一款符合IEEE802.15.4规范的2.4 GHz的射频器件,硬件支持载波监听多路访问/冲突检测(CSMA/CA),2.0~3.6 V的工作电压有利于实现系统低功耗。通过连接在控制中心的ZigBee协调器模块,在室内建立无线星形ZigBee网络.并将所有监控节点、选择添加的家用电器控制器作为该网络中的终端节

  点加入网络中,从而实现室内安防及家电的无线ZigBee网络控制。

  控制中心MCU采用8位单片机ATMegal28,该器件是一款高性能、低功耗的RISC结构的单片机,大多数指令可在1个时钟周期内完成,最高工作于16 MHz,具有128 K的系统内可编程Flash,4 K字节的EEPROM和2个串行接口。它与GSM模块、RFID模块、液晶模块、ZigBee协调器和PC机相连,是整套硬件系统的核心,完成对中央控制管理系统的响应和对各模块的驱动。GSM模块采用TC35i模块。它通过串行UART接口直接与控制中心MCU相连。RFID模块采用ZLG500模块,其内部集成了MFRC500型ISO14443A读卡器,能够读写RC500内的.EEPROM。由于ZLG500并不是采用标准SPI接口规范,故只能与单片机的通用I/O接口相连才能实现通信。液晶模块选用1602液晶,采用4线接口与控制中心MCU的通用I/O接口相连。ZigBee协调器与控制中心MCU采用2线接口即可实现两者间的数据双向传输。控制中心MCU与计算机RS232串口相连,传输数据稳定、可靠,实时性好。

  2.2 监控节点

  监控节点的功能有:1)人体信号的检测,当盗贼入侵时进行声光报警;2)灯光的控制,其控制方式分为自动控制和手动控制,自动控制是根据室内光线的强弱自动打开/关闭灯光,手动控制是通过中央控制管理系统实现灯光控制:3)将报警信息及其他信息发送至控制中心,并接收来自控制中心的控制指令以完成设备控制。从监控节点的功能出发,监控节点组成如图3所示。

  无线通讯

  红外加微波的探测模式是目前在人体信号检测时最常用的方式。热释电红外探头这里选用RE200B,放大器件采用BISS0001。RE200B由3~10 V电压供电,内置热释电双敏感红外元件,当元件接收红外光时在每个元件两极发生光电效应而积累电荷。BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。它与RE200B及少量元件就可构成被动式热释电红外开关。微波传感器选用ANT-G100模块,中心频率是10 GHz,建立时间最大值是6μs。与热释电红外模块复合使用,可有效降低目标探测错误率。

  灯光控制模块主要由光敏电阻和灯光控制继电器组成。将光敏电阻与10 kΩ的可调电阻串联,再将光敏电阻另一端接地,可调电阻另一端接高电平。通过单片机的模数转换器获取两个电阻连接点的电压值,从而判定当前灯光是否打开。可调电阻可供用户调节,以满足用户设置灯光刚刚打开时的光线强度。室内灯光的开关通过继电器控制。只需一个输入输出口即可实现。

  2.3 选择添加的家用电器控制器

  选择添加的家用电器的控制主要根据设备功能实现设备控制,这里以电风扇为例。电风扇控制就是控制中心将上位机下达的电风扇控制指令通过ZigBee网络发送至电风扇控制器实现,不同的家电识别码是不同的,例如,本协议规定电风扇的识别码是122,家用彩电的识别码是123,这样就实现控制中心对不同家电的识别。而对于相同的指令代码,不同家电执行的功能是不一样的。图4为选择添加的家用电器组成。

  无线通讯

  3 系统软件设计

  系统软件设计主要包括6部分,分别为远程控制网页设计、中央控制管理系统设计,控制中心主控制器ATMegal28程序设计、CC2430协调器程序设计、CC2430监控节点程序设计、CC2430选择添加设备的程序设计。

  3.1 ZigBee协调器的程序设计

  协调器首先完成应用层初始化,将应用层状态和接收状态设为空闲,然后打开全局中断并初始化I/O端口。接着协调器开始建立无线星形网络。协议中,协调器自动选择2.4 GHz的频段,每秒发送的最大比特数为62 500,默认的个域网网络号(PANID)是0x1347,最大的堆栈深度为5,最大单次发送的字节数为93,串口的波特率是57 600 bit/s,SL0W TIMER每秒产生中断10次。在ZigBee网络建立成功后,协调器将其地址传送给控制中心MCU。这里,控制中心MCU将ZigBee协调器识别为监控节点的一员,它被识别的地址为0。程序进入主循环。首先判断是否有终端节点发送的新数据,如果有,则直接把这个数据传送至控制中心MCU;判断控制中心MCU是否有指令下传,如果有则将下传的指令发送到相应的ZigBee终端节点;判断安防是否打开,是否有盗贼入侵,如果有则把报警信息传送至控制中心MCU;判断灯光是否处于自动控制状态,如果是,则打开模数转换器进行采样,采样值是灯光打开或关闭的关键,如果发生灯光状态改变则把新的状态信息传送到控制中心MC-U。ZigBee协调器程序流程如图5所示。

  无线通讯

  3.2 ZigBee终端节点的程序设计

  ZigBee终端节点是指由ZigBee协调器控制的无线ZigBee节点,在系统中主要是监控节点和选择添加的家用电器控制器。ZigBee终端节点的初始化同样包括应用层初始化,打开中断和初始化I/O口。接着尝试加入ZigBee网络,需要强调的是:只有和ZigBee协调器设置一致的终端节点才能加入到网络中。如果ZigBee终端节点尝试加入网络失败,则每两秒重新尝试一次,直至顺利加入到网络中。加入网络成功后,Zi-gBee终端节点将其注册信息发送至ZigBee协调器,再由ZigBee协调器转发至控制中心MCU以完成ZigBee终端节点的注册。ZigBee终端节点如果是监控节点,则实现灯光及安防的控制,程序与ZigBee协调器部分类似,只是监控节点需将数据发送到ZigBee协调器,再由ZigBee协调器将数据传送至控制中心MCU。ZigBee终端节点如果是电风扇控制器,则只需接收上位机的数据,而不必上传状态,故它的控制可以在无线数据接收中断中直接完成。在无线数据接收中断中,所有终端节点都是将接收的控制指令翻译成对节点本身的控制参数,在节点主程序中不对接收的无线指令进行任何处理。

  4 联机调试

  由中央控制管理系统下发的对固定设备的指令编码递增的指令,通过计算机串口发送至控制中心MCU,并通过两线接口发送至协调器,再由协调器发送至ZigBee终端节点,在终端节点接收完成时将数据再次通过串口发送至PC机,在这台PC机上完成ZigBee终端节点接收的数据与控制中心所发送的数据的比较。中央控制管理系统每一秒发送2条指令,经过5 h的测试,测试软件显示共接收数据包数量为36000包时停止测试。多协议数据传输测试软件测试结果如图6所示。正确数据包36 000,错误数据包数为0,正确率为100%。

  无线通讯

  5 结束语

  通过ZigBee技术实现智能家居内部组网,具有远程控制方便,添加新设备灵活和控制性能可靠等优点。通过RFTD技术实现用户身份识别,提高系统的安全性。通过GSM模块的接入,实现了远程控制和报警功能。

  四、基于ZigBee的室内定位系统设计

  引言

  随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置。但是受定位时间、定位精度以及室内复杂环境等条件的限制,比较完善的定位技术目前还无法很好地利用。ZigBee是一种新兴的短距离、低速率无线网络技术,它最显著的特点是低功耗和低成本。利用ZigBee技术实现定位具有低成本、低功耗的优点,且信号传输不受视距的影响。

  

  1 相关核心技术概述

  1.1 ZigBee技术概述

  ZigBee技术[1]是一种新兴的近距离、低功耗、低成本、低数据率、低复杂度的双向无线通信技术,它是基于IEEE 802.15.4标准开发的无线协议。网络层以上协议由ZigBee联盟制定,IEEE 802.15.4负责物理层和链路层标准。完整的ZigBee协议套件由应用层、应用架构层、网络层以及数据链路层和物理层等组成,协议栈结构如图1所示。

  无线通讯

  图1 ZigBee协议栈结构

  ZigBee可使用的频段有3个,分别是2.4 GHz的ISM频段、欧洲的868 MHz 频段以及美国的915 MHz 频段,不同频段可使用的信道分别是16、1、10个。中国采用2.4 GHz频段,它是免申请和免使用费的频段;采用直接序列扩频技术DSSS(Direct Sequence Spread Spectrum),传输距离介于10~75 m(增加RF发射功率,可达500 m);传输速率为20~250 kb/s,适合传感器数据采集和控制数据的传输。ZigBee技术具有强大的组网能力,可以形成星型、树型和MESH网状网。

  1.2 RSSI定位技术

  RSSI[2](Received Signal Strength Indicator,接收信号强度指示)是指节点接收到的无线信号强度大小。在基于接收信号强度指示RSSI 的定位中,已知发射节点的发射信号强度,接收节点根据接收到信号的强度计算出信号的传播损耗,利用理论和经验模型将传输损耗转化为距离,再利用已有的算法计算出节点的位置。该技术硬件要求较低、算法相对简单,在实验室环境中表现出良好特性;但由于环境因素变化的原因,在实际应用中往往还需要改进。接收信号强度是发射功率和发射器与接收器间距离的函数。

  接收信号强度RSSI理论值可由式 (1)表示:

  RSSI=-(10n·lgd+A)(1)

  其中,n代表信号传播常量,也叫传播指数;d代表距发射器间的距离;A代表距离1 m时的接收信号强度。

  信号的衰减与距离成对数衰减的关系。节点到信号源的距离越近, 由RSSI值的偏差产生的绝对距离误差越小;而当距离大于某一值时,由RSSI波动造成的绝对距离误差将会很大。一个未知节点可能收到n个参考节点的信号, 所以应当采用RSSI值大的前几个参考节点进行定位计算,这样可以避免定位误差扩大。

  2 ZigBee技术实现定位的优势

  (1) 功耗低

  由于ZigBee的传输速率低,发射功率仅为1 mW,而且采用了休眠模式,因此ZigBee设备非常省电。ZigBee设备仅靠2节5号电池就可以维持长达6个月到2年左右的使用时间,其功耗远远低于其他无线设备。

  (2) 成本低

  与 GPS相比,定位引擎在单芯片 ZigBee RF收发器中与 MCU集成在一起,成本不及 GPS硬件的1/10,功耗也只是 GPS硬件的一小部分,并且ZigBee协议是免专利费的。

  (3) 时延短

  通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延为30 ms,休眠激活的时延是15 ms,活动设备信道接入的时延为15 ms。因此ZigBee技术适用于对实时定位要求较高的应用。

  (4) 网络容量大

  一个星型结构的ZigBee网络最多可以容纳254个从设备和1个主设备,组网方式灵活。随着ZigBee技术的成熟,未来ZigBee设备不断增多,可以利用具有ZigBee RF的设备或基础设施,容易组建ZigBee网络,降低了ZigBee节点设计和组网成本,且利用更多的ZigBee设备可以达到更高的定位精度。

  3 室内定位系统设计

  3.1 系统结构

  定位系统由盲节点(即待定位节点)和参考节点组成,为了便于用户获得位置信息,还需要一个与用户进行交互的控制终端和一个ZigBee网关。系统结构如图2所示。

  无线通讯

  图2 系统结构图

  参考节点是一个位于已知位置的静态节点,这个节点知道自己的位置并可以将其位置通过发送数据包通知其他节点。盲节点从参考节点处接收数据包信号,获得参考节点位置坐标及相应的RSSI值并将其送入定位引擎,然后可以读出由定位引擎计算得到的自身位置。由参考节点发送给盲节点的数据包至少包含参考节点的坐标参数水平位置X和竖直位置Y,而RSSI值可由接收节点计算获得。

  一般来说参考节点越多越好,要得到一个可靠的定位坐标至少需要3个参考节点。如果参考节点太少,节点间影响会很大,得到的位置信息就不精确,误差大。对于CC2431,要得到好的定位精度,需要8个参考节点;如果得不到8个节点,则应该使用尽可能多的节点。CC2431的无线定位引擎可以处理最高达64 m的X、Y值。

  为了收集计算得到的数据和与无线节点网络交互,特定的控制系统是必需的。一个典型的控制单元是一台计算机,然而一个PC没有一个嵌入的无线接收器,因此接收器需要从外部接入,还需要一个ZigBee网关。ZigBee网关的作用就是将无线网络连接到控制终端,所有位置计算都由盲节点来实现,所以控制终端不需要具备任何位置计算功能。它的唯一目的是让用户和无线网络进行交互,比如获得盲节点的位置信息。

  3.2 CC2431芯片简介

  CC2431是TI公司推出的带硬件定位引擎的片上系统(SoC)解决方案,能满足低功耗ZigBee/IEEE 802.15.4无线传感器网络的应用需要。CC2431的定位引擎基于RSSI技术,根据接收信号强度与已知参考节点位置准确计算出有关节点位置,然后将位置信息发送给接收端。

  CC2431由2.4 GHz直接序列扩频(DSSS)射频收发器核心和增强型工业标准的8位8051微控制器组成,是带有128 KB闪存的8051内核ZigBee无线单片机,并带有定位跟踪引擎。CC2431的设计结合了8 KB的RAM及强大的外围模块,并且有3种不同的版本,它们是根据不同的闪存空间32 KB、64 KB和128 KB来优化复杂度与成本的组合。CC2431的尺寸只有7 mm×7 mm的48脚封装,采用具有内嵌闪存的0.18 μm CMOS标准技术。针对协议栈、网络和应用软件执行时对MCU处理能力的要求,CC2431包含一个增强型工业标准的8位8051微控制器内核,运行的时钟频率为32 MHz。CC2431还包含一个DMA控制器,它能够被用于减轻8051微控制器内核对数据搬移的操作,因此提高了芯片整体的性能。

  系统基本硬件连接电路如图3所示。连接50 Ω单极天线的部分由电感和电容构成,其中的电感L1、L2还为芯片内部的低噪声放大器和功放提供直流偏置。也可采用一个无需阻抗匹配电路的折叠式偶极子PCB天线。图3中,XTAL1为一个等效串联电阻(ESR)《60 Ω的32 MHz晶振,R1为其建立精确的偏置电路,C1、C2是去耦电容,用于电源滤波,向电压调节器提供稳定的核心电压。

  图3中,CC231还提供了良好的接地保护功能,除了48引脚外,其芯片底层提供了AGND接地引脚,可以有效地抑制噪声,减少电磁干扰,保证电路系统稳定工作。

  无线通讯

  图3 系统基本硬件连接电路

  3.3 定位引擎操作流程

  无线通讯

  图4 定位引擎操作流程

  CC2431的硬件定位引擎与软件定位方法相比的优势是: 速度快、精度高,不占用处理器时间。该定位引擎的主要特点如下:定位估计算法需3~8个参考节点;定位估计以0.5 m为单位;计算节点位置耗时少于40 μs;定位范围为64 m;定位偏差低于3 m;定位引擎采用分布式计算方法,该方法使用已知参考节点的RSSI信息定位。在节点上分布式定位计算可避免集中计算方法带来的大量网络传输与通信延迟问题。定位引擎操作流程[3]如图4所示。

  在定位引擎运行之前,必须使能定位引擎寄存器LO2CENG的第4位LOCENG.EN。当要停止定位引擎运行时,应往LOCENG.EN 写入0关断引擎的时钟信号,以降低CC2431的功耗。对定位引擎的操作,主要就是对与定位引擎有关的寄存器的操作。

  定位引擎运行时需要输入3~8个参考坐标。参考坐标是以m为单位的,它表示各个参考节点的位置,其数值位于0~63.75,最高精度为0.25 m,以最低2位为小数部分,剩余6位为整数部分。参考坐标存放于RF 寄存器REFCOORD中。在写入REFCOORD之前,寄存器LO2CENG的第1位LOCENG.REFLD 必须写入1,用于指示一组参考坐标将要被写入。一旦坐标写入过程开始(LO2CENG.REFLD=1),8对坐标必须一次性写入。当定位引擎使用少于8个参考坐标时,要将未用的参考坐标写入0.0。

  4 定位区域的扩展

  定位引擎可以处理最高达64 m的X、Y值,更准确地说是63.75 m,但是这个区域对实际应用来说显得太小,因此扩展区域非常必要。可以通过软件预处理算法来实现。每个节点用2个字节代表X、Y。因为精度为0.25 m, 因此最大范围为16 384 m(214=16 384)。图5是用预处理算法进行区域扩展的示意图。

  无线通讯

  图5 扩展定位区域示意图

  该图所示的区域中,在X、Y方向上每隔30 m放置一个参考节点,虚环中间的白色节点为盲节点,其他节点为参考节点。第1步,确定具有最高RSSI值的一个节点并计算一个补偿值,使之“移动”到64 m×64 m范围的中心。由于已知来自此节点的RSSI值,所以到此节点的距离很容易得到;第2步,确定除“最强”节点之外的其他使用节点,所有节点用第1步中的补偿值进行修正;第3步,所有获得值送入定位引擎,读出由其计算得到的位置;最后一步,将补偿值添加到计算得到的位置中,完成这些计算之后,盲节点在网格中的位置就确定了。

  结语

  CC2431作为一款集成有定位引擎的ZigBee射频收发器,结合其他ZigBee节点构成的无线网络,可以实现3~5 m的定位精度。ZigBee作为一种高性价比、低成本、低功耗、低复杂度的无线通信技术,以其来实现室内无线定位具有良好的应用前景。随着人们生活水准的提高,人们对定位服务有着越来越高的需求,虽然目前已经有多种定位技术,但是在室内定位方面存在一定缺陷和不足。如果将这些定位技术和ZigBee定位技术结合起来,将会实现更加完美和精准的定位服务。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有